Two infinite nested roots.

https://www.linkedin.com/feed/update/urn:li:activity:6468373947728699392 2062.Proposed by K.R.S. Sastry, Dodballapur, India.

Find a positive integer n so that both the continued roots

$$\sqrt{1995 + \sqrt{n + \sqrt{1995 + \sqrt{n + \dots}}}}$$
and

$$\sqrt{n} + \sqrt{1995 + \sqrt{n} + \sqrt{1995 + \dots}}$$

converge to positive integers.

Solution by Arkady Alt, San Jose, California, USA.

Let a, b be real positive numbers.

Consider two sequences $(x_n), (y_n)$ defined by the system of recurrences of the first order;

(1)
$$\begin{cases} x_{n+1} = \sqrt{a+y_n} \\ y_{n+1} = \sqrt{b+x_n} \end{cases} n \in \mathbb{N} \text{ and } x_1 = \sqrt{a}, y_1 = \sqrt{b}. \end{cases}$$

Let $h(x) := \sqrt{a + \sqrt{b + x}}$. Then $x_{n+2} = h(x_n), x_1 = \sqrt{a}, x_2 = \sqrt{a + \sqrt{b}}$ and $y_{n+2} = h(y_n) y_1 = \sqrt{b}, y_2 = \sqrt{b + \sqrt{a}}$

Both sequences are convergent and to prove this suffice consider one of them, let it $be(x_n)$.

Let
$$m := \max\{a, b\}$$
 and $m_n = \sqrt{m + \sqrt{m + \sqrt{m}}}$ (n roots).

Since $x_n \le m_n, n \in \mathbb{N}$ and $m_n \le \frac{1 + \sqrt{4m + 1}}{2}$ then (x_n) is bounded from above.

Also, (x_n) is increasing sequence.

Indeed, since $x_1 < x_2 < x_3$ and for any $n \in \mathbb{N}$ assuming that

 $x_{2n-1} < x_{2n} < x_{2n+1}, n \in \mathbb{N}$ we obtain

 $h(x_{2n-1}) < h(x_{2n}) < h(x_{2n+1}) \iff x_{2n+1} < x_{2n+2} < x_{2n+3}.$

then by Math Induction $x_{2n-1} < x_{2n} < x_{2n+1}$ for any $n \in \mathbb{N}$, that is (x_n) is increasing sequence.

As increasing and bounded from above (x_n) is convergent and (y_n) is convergent by the same reason. Let $x := \lim_{n \to \infty} x_n$ and $y_n := \lim_{n \to \infty} y_n$. Then passing to limit in (1) we obtain for (x, y) system of equation

(2)
$$\begin{cases} x = \sqrt{a+y} \\ y = \sqrt{b+x} \end{cases} \iff \begin{cases} x^2 = a+y \\ y^2 = b+x \end{cases}.$$

Applying system (4) for nested roots of the problem we obtain

$$\begin{cases} x^2 = 1995 + y \\ y^2 = n + x \end{cases}.$$

Let $y \in \mathbb{N}$ be such that 1995 + y is a perfect square, that is $1995 + y = (44 + t)^2$. Then x = 44 + t, $y = x^2 - 1995 = (44 + t)^2 - 1995 = t^2 + 88t - 59$ and $n = y^2 - x = (t^2 + 88t - 59)^2 - (44 + t) = t^4 + 176t^3 + 7626t^2 - 10385t + 3437$ for any $t \in \mathbb{N}$ (because $P(t) := t^4 + 176t^3 + 7626t^2 - 10385t + 3437 \ge 1$ for any $t \in \mathbb{N}$). Thus, for any $t \in \mathbb{N}$ we have $(x, y, n) = (44 + t, t^2 + 88t - 59, P(t))$ For example let t = 1 we obtain x = 45, y = 84, n = P(t) = 855