Two infinite nested roots.

https://www.linkedin.com/feed/update/urn:li:activity:6468373947728699392
2062.Proposed by K.R.S. Sastry, Dodballapur, India.

Find a positive integer n so that both the continued roots
$\sqrt{1995+\sqrt{n+\sqrt{1995+\sqrt{n+\ldots}}}}$
and
$\sqrt{n+\sqrt{1995+\sqrt{n+\sqrt{1995+\ldots}}}}$
converge to positive integers.

Solution by Arkady Alt, San Jose,California, USA.

Let a, b be real positive numbers.
Consider two sequences $\left(x_{n}\right),\left(y_{n}\right)$ defined by the system of recurrences of the first order;
(1) $\left\{\begin{array}{l}x_{n+1}=\sqrt{a+y_{n}} \\ y_{n+1}=\sqrt{b+x_{n}}\end{array} n \in \mathbb{N}\right.$ and $x_{1}=\sqrt{a}, y_{1}=\sqrt{b}$.

Let $h(x):=\sqrt{a+\sqrt{b+x}}$. Then $x_{n+2}=h\left(x_{n}\right), x_{1}=\sqrt{a}, x_{2}=\sqrt{a+\sqrt{b}}$
and $y_{n+2}=h\left(y_{n}\right) y_{1}=\sqrt{b}, y_{2}=\sqrt{b+\sqrt{a}}$
Both sequences are convergent and to prove this suffice consider one of them, let it $\mathrm{be}\left(x_{n}\right)$.
Let $m:=\max \{a, b\}$ and $m_{n}=\sqrt{m+\sqrt{m+\sqrt{m \ldots+\sqrt{m}}}}$ (n roots).
Since $x_{n} \leq m_{n}, n \in \mathbb{N}$ and $m_{n} \leq \frac{1+\sqrt{4 m+1}}{2}$ then $\left(x_{n}\right)$ is bounded from above.
Also, $\left(x_{n}\right)$ is increasing sequence.
Indeed, since $x_{1}<x_{2}<x_{3}$ and for any $n \in \mathbb{N}$ assuming that
$x_{2 n-1}<x_{2 n}<x_{2 n+1}, n \in \mathbb{N}$ we obtain
$h\left(x_{2 n-1}\right)<h\left(x_{2 n}\right)<h\left(x_{2 n+1}\right) \Leftrightarrow x_{2 n+1}<x_{2 n+2}<x_{2 n+3}$.
then by Math Induction $x_{2 n-1}<x_{2 n}<x_{2 n+1}$ for any $n \in \mathbb{N}$, that is $\left(x_{n}\right)$ is increasing sequence.
As increasing and bounded from above $\left(x_{n}\right)$ is convergent and $\left(y_{n}\right)$ is convergent by the same reason. Let $x:=\lim _{n \rightarrow \infty} x_{n}$ and $y_{n}:=\lim _{n \rightarrow \infty} y_{n}$.
Then passing to limit in (1) we obtain for (x, y) system of equation
(2) $\left\{\begin{array}{l}x=\sqrt{a+y} \\ y=\sqrt{b+x}\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}=a+y \\ y^{2}=b+x\end{array}\right.\right.$.

Applying system (4) for nested roots of the problem we obtain
$\left\{\begin{array}{c}x^{2}=1995+y \\ y^{2}=n+x\end{array}\right.$.
Let $y \in \mathbb{N}$ be such that $1995+y$ is a perfect square, that is $1995+y=(44+t)^{2}$.
Then $x=44+t, y=x^{2}-1995=(44+t)^{2}-1995=t^{2}+88 t-59$ and

$$
n=y^{2}-x=\left(t^{2}+88 t-59\right)^{2}-(44+t)=t^{4}+176 t^{3}+7626 t^{2}-10385 t+3437
$$

for any $t \in \mathbb{N}$ (because $P(t):=t^{4}+176 t^{3}+7626 t^{2}-10385 t+3437 \geq 1$ for any $t \in \mathbb{N}$). Thus, for any $t \in \mathbb{N}$ we have
$(x, y, n)=\left(44+t, t^{2}+88 t-59, P(t)\right)$
For example let $t=1$ we obtain $x=45, y=84, n=P(t)=855$

